Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Front Med (Lausanne) ; 11: 1332434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606155

RESUMO

Objectives: Paediatric oncologists often encounter challenges when seeking compassionate access to off-label therapies for their patients. This study employed implementation science and co-design techniques to develop the ProCure medicines database, with the goal of streamlining the application process and addressing identified barriers in paediatric oncology. Methods: This study utilised an exploratory qualitative research design. Seventeen healthcare providers, including oncologists, nurse consultants, and allied health professionals, participated in semi-structured interviews guided by the Consolidated Framework for Implementation Research (CFIR) and a visual process map aid. Deductive qualitative data analysis, according to the CFIR constructs, identified key barriers and facilitators. Collaborative design sessions engaged multidisciplinary teams to develop the ProCure beta version. Results: Barriers to off-label therapy access included resource-intensive applications, time sensitive decision-making, and complex pharmaceutical information. Facilitators included Drug Access Navigators, Molecular Tumour Boards, and a multi-disciplinary approach. ProCure addressed end-user needs by centralising medicines information. Additional features suggested by healthcare providers included blood-brain-barrier penetrability data and successful application examples. Conclusion: ProCure represents a promising solution to the challenges paediatric oncologists face in accessing off-label therapies. By centralising information, it simplifies the application process, aids decision-making, and promotes a collaborative approach to patient care. The potential of the database to stream and enhance off-label therapy access underscores its relevance in improving paediatric oncology practise. Further research and implementation efforts are warranted to assess ProCure's real-world impact and refine its features based on user feedback.

2.
Neurooncol Adv ; 6(1): vdae029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550394

RESUMO

Background: Diffuse intrinsic pontine gliomas (DIPGs) pose a significant challenge as a highly aggressive and currently incurable form of pediatric brain cancer, necessitating the development of novel therapeutic strategies. Omacetaxine, an FDA-approved protein synthesis inhibitor for treating certain hematological malignancies, was investigated for its potential antitumor effects against preclinical DIPG models. Methods: We employed primary DIPG cultures to study omacetaxine's cytotoxicity and its impact on colony formation. Annexin V staining and flow cytometry assessed apoptosis. Wound healing assays evaluated migration, while western blotting determined inhibition of oncogenic proteins. We tested omacetaxine's therapeutic efficacy in an orthotopic DIPG model and assessed brain penetration using mass spectrometry. Results: We found a pronounced cytotoxic activity of omacetaxine against DIPG neurospheres, with low IC50 values of approximately 20 nM. Omacetaxine exerted its anti-proliferative effect by inhibiting protein synthesis and the induction of apoptotic pathways, evidenced by significant elevated levels of cleaved caspase 3 and cleaved PARP, both key markers of apoptosis. Omacetaxine effectively targeted oncogenic players such as PDGFRα and PI3K without additional effects on the mTOR signaling pathway. Furthermore, our study revealed the inhibitory effects of omacetaxine on cell migration, and a significant reduction in integrin/FAK signaling, which plays a crucial role in tumor progression and metastasis. Conclusions: Despite these promising in vitro effects, omacetaxine's efficacy in an orthotopic DIPG model was limited due to inadequate penetration across the blood-brain barrier. As such, further research and advancements are crucial to improve the drug's brain penetration, thus enhancing its overall therapeutic potential.

3.
Lancet Oncol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552658

RESUMO

BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD. METHODS: In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions. FINDINGS: We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions. INTERPRETATION: The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD. FUNDING: The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.

4.
Target Oncol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546944

RESUMO

BACKGROUND: Recurrent or refractory solid and central nervous system (CNS) tumours in paediatric patients have limited treatment options and carry a poor prognosis. The EnGeneIC Dream Vector (EDV) is a novel nanocell designed to deliver cytotoxic medication directly to the tumour. The epidermal growth factor receptor is expressed in several CNS and solid tumours and is the target for bispecific antibodies attached to the EDV. OBJECTIVE: To assess the safety and tolerability of EGFR-Erbitux receptor EnGeneIC Dream Vector with mitoxantrone (EEDVsMit) in children with recurrent / refractory solid or CNS tumours expressing EGFR. PATIENTS AND METHODS: Patients aged 2-21 years with relapsed or refractory CNS and solid tumours, or radiologically diagnosed diffuse intrinsic pontine glioma (DIPG), were treated in this phase I open-label study of single agent EEDVsMit. Thirty-seven patients' tumours were screened for EGFR expression. EEDVsMit was administered twice weekly in the first cycle and weekly thereafter. Standard dose escalation with a rolling 6 design was employed. Dosing commenced at 5 × 108 EEDVsMit per dose and escalated to 5 × 109 EEDVsMit per dose. RESULTS: EGFR expression was detected in 12 (32%) of the paediatric tumours tested. Nine patients were enrolled and treated on the trial, including three patients with diffuse midline glioma. Overall, EEDVsMit was well tolerated, with no dose-limiting toxicities observed. The most common drug-related adverse events were grade 1-2 fever, nausea and vomiting, rash, lymphopaenia, and mildly deranged liver function tests. All patients had disease progression, including one patient who achieved a mixed response as the best response. CONCLUSIONS: EGFR-Erbitux receptor targeted EnGeneIC Dream Vector with mitoxantrone can be safely delivered in paediatric patients aged 2-21 years with solid or CNS tumours harbouring EGFR expression. The discovery of EGFR expression in a high proportion of paediatric gliomas means that EGFR may be useful as a target for other treatment strategies. Targeted therapeutic-loaded EDVs may be worth exploring further for their role in stimulating an anti-tumour immune response. GOV IDENTIFIER: NCT02687386.

6.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
8.
Palliat Support Care ; : 1-7, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263685

RESUMO

OBJECTIVES: Hard-to-treat childhood cancers are those where standard treatment options do not exist and the prognosis is poor. Healthcare professionals (HCPs) are responsible for communicating with families about prognosis and complex experimental treatments. We aimed to identify HCPs' key challenges and skills required when communicating with families about hard-to-treat cancers and their perceptions of communication-related training. METHODS: We interviewed Australian HCPs who had direct responsibilities in managing children/adolescents with hard-to-treat cancer within the past 24 months. Interviews were analyzed using qualitative content analysis. RESULTS: We interviewed 10 oncologists, 7 nurses, and 3 social workers. HCPs identified several challenges for communication with families including: balancing information provision while maintaining realistic hope; managing their own uncertainty; and nurses and social workers being underutilized during conversations with families, despite widespread preferences for multidisciplinary teamwork. HCPs perceived that making themselves available to families, empowering them to ask questions, and repeating information helped to establish and maintain trusting relationships with families. Half the HCPs reported receiving no formal training for communicating prognosis and treatment options with families of children with hard-to-treat cancers. Nurses, social workers, and less experienced oncologists supported the development of communication training resources, more so than more experienced oncologists. SIGNIFICANCE OF RESULTS: Resources are needed which support HCPs to communicate with families of children with hard-to-treat cancers. Such resources may be particularly beneficial for junior oncologists and other HCPs during their training, and they should aim to prepare them for common challenges and foster greater multidisciplinary collaboration.

9.
Br J Cancer ; 130(5): 788-797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200233

RESUMO

BACKGROUND: MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS: Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS: Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION: High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Criança , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Celecoxib/uso terapêutico , Ciclofosfamida/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Topotecan/uso terapêutico , Pré-Escolar , Adolescente , Adulto Jovem , Adulto
10.
BMC Cancer ; 24(1): 147, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291372

RESUMO

BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.


Assuntos
Vaga-Lumes , Glioma , Animais , Criança , Humanos , Adulto Jovem , Vaga-Lumes/metabolismo , Proteínas Proto-Oncogênicas B-raf , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Resultado do Tratamento , Mutação , Proteínas Quinases Ativadas por Mitógeno , Oximas , Piridonas , Pirimidinonas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
11.
Cancer Discov ; 14(2): 258-273, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37823831

RESUMO

Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Antígeno CTLA-4 , Glioma/tratamento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos/uso terapêutico , Imunoterapia , Microambiente Tumoral
12.
Nat Med ; 30(1): 207-217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37978284

RESUMO

BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .


Assuntos
Vaga-Lumes , Glioma , Humanos , Criança , Animais , Proteínas Proto-Oncogênicas B-raf/genética , Glioma/tratamento farmacológico , Glioma/genética
13.
Cancer ; 129(23): 3772-3782, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769113

RESUMO

BACKGROUND: Larotrectinib, a first-in-class, highly selective tropomyosin receptor kinase (TRK) inhibitor, has demonstrated efficacy in adult and pediatric patients with various solid tumors harboring NTRK gene fusions. This subset analysis focuses on the efficacy and safety of larotrectinib in an expanded cohort of adult patients with TRK fusion sarcomas. METHODS: Patients (≥18 years old) with sarcomas harboring NTRK gene fusions were identified from three clinical trials. Patients received larotrectinib 100 mg orally twice daily. Response was investigator-assessed per RECIST v1.1. Data cutoff was July 20, 2021. RESULTS: At the data cutoff, 36 adult patients with TRK fusion sarcomas had initiated larotrectinib therapy: two (6%) patients had bone sarcomas, four (11%) had gastrointestinal stromal tumors, and 30 (83%) had soft tissue sarcomas. All patients were evaluable for response and demonstrated an objective response rate of 58% (95% confidence interval, 41-74). Patients responded well to larotrectinib regardless of number of prior lines of therapy. Adverse events (AEs) were mostly grade 1/2. Grade 3 treatment-emergent AEs (TEAEs) occurred in 15 (42%) patients. There were no grade 4 TEAEs. Two grade 5 TEAEs were reported, neither of which were considered related to larotrectinib. Four (11%) patients permanently discontinued treatment due to TEAEs. CONCLUSIONS: Larotrectinib demonstrated robust and durable responses, extended survival benefit, and a favorable safety profile in adult patients with TRK fusion sarcomas with longer follow-up. These results continue to demonstrate that testing for NTRK gene fusions should be incorporated into the clinical management of adult patients with various types of sarcomas. PLAIN LANGUAGE SUMMARY: Tropomyosin receptor kinase (TRK) fusion proteins result from translocations involving the NTRK gene and cause cancer in a range of tumor types. Larotrectinib is an agent that specifically targets TRK fusion proteins and is approved for the treatment of patients with TRK fusion cancer. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. Over half of patients had a durable response to larotrectinib, with no unexpected side effects. These results show that larotrectinib is safe and effective in adult patients with TRK fusion sarcomas.


Assuntos
Neoplasias Ósseas , Neoplasias , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Adulto , Adolescente , Tropomiosina/genética , Tropomiosina/uso terapêutico , Sarcoma/tratamento farmacológico , Sarcoma/genética , Neoplasias/tratamento farmacológico , Pirazóis/efeitos adversos , Neoplasias de Tecidos Moles/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Fusão Gênica , Proteínas de Fusão Oncogênica/genética , Neoplasias Ósseas/tratamento farmacológico , Receptor trkA/genética
14.
Mol Cancer Ther ; 22(12): 1413-1421, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683275

RESUMO

Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009-1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009-1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009-1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009-1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009-1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Animais , Humanos , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Histona Desacetilases/genética , Linhagem Celular Tumoral , Mutação , Microtúbulos/metabolismo
15.
Br J Cancer ; 129(10): 1634-1644, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726477

RESUMO

BACKGROUND: Paediatric precision oncology aims to match therapeutic agents to driver gene targets. We investigated whether parents and patients regret participation in precision medicine trials, particularly when their hopes are unfulfilled. METHODS: Parents and adolescent patients completed questionnaires at trial enrolment (T0) and after receiving results (T1). Parents opted-in to an interview at T1. Bereaved parents completed a questionnaire 6-months post-bereavement (T1B). We analysed quantitative data with R and qualitative data thematically with NVivo, before integrating all data for interpretation. RESULTS: 182 parents and 23 patients completed T0; 108/182 parents and 8/23 patients completed T1; 27/98 bereaved parents completed T1B; and 45/108 parents were interviewed. At enrolment, participants held concurrent hopes that precision medicine would benefit future children and their child. Participants expressed concern regarding wait-times for receipt of results. Most participants found the trial beneficial and not burdensome, including bereaved parents. Participants reported high trial satisfaction (median scores: parents: 93/100; patients: 80/100). Participants expressed few regrets (parent median scores: parents: 10/100; bereaved parents: 15/100; patient regret: 2/8 expressed minimal regret). CONCLUSIONS: Even when trial outcomes did not match their hopes, parents and patients rarely regretted participating in a childhood cancer precision medicine trial. These data are critical for integrating participants' views into future precision medicine delivery.


Assuntos
Luto , Neoplasias , Adolescente , Criança , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Satisfação do Paciente , Pais
16.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523146

RESUMO

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Criança , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos
17.
J Pers Med ; 13(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511646

RESUMO

Precision medicine programs aim to utilize novel technologies to identify personalized treatments for children with cancer. Delivering these programs requires interdisciplinary efforts, yet the many groups involved are understudied. This study explored the experiences of a broad range of professionals delivering Australia's first precision medicine trial for children with poor-prognosis cancer: the PRecISion Medicine for Children with Cancer (PRISM) national clinical trial of the Zero Childhood Cancer Program. We conducted semi-structured interviews with 85 PRISM professionals from eight professional groups, including oncologists, surgeons, clinical research associates, scientists, genetic professionals, pathologists, animal care technicians, and nurses. We analyzed interviews thematically. Professionals shared that precision medicine can add complexity to their role and result in less certain outcomes for families. Although many participants described experiencing a greater emotional impact from their work, most expressed very positive views about the impact of precision medicine on their profession and its future potential. Most reported navigating precision medicine without formal training. Each group described unique challenges involved in adapting to precision medicine in their profession. Addressing training gaps and meeting the specific needs of many professional groups involved in precision medicine will be essential to ensure the successful implementation of standard care.

18.
J Mol Diagn ; 25(10): 709-728, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517472

RESUMO

DNA methylation array profiling for classifying pediatric central nervous system (CNS) tumors is a valuable adjunct to histopathology. However, unbiased prospective and interlaboratory validation studies have been lacking. The AIM BRAIN diagnostic trial involving 11 pediatric cancer centers in Australia and New Zealand was designed to test the feasibility of routine clinical testing and ran in parallel with the Molecular Neuropathology 2.0 (MNP2.0) study at Deutsches Krebsforschungszentrum (German Cancer Research Center). CNS tumors from 269 pediatric patients were prospectively tested on Illumina EPIC arrays, including 104 cases co-enrolled on MNP2.0. Using MNP classifier versions 11b4 and 12.5, we report classifications with a probability score ≥0.90 in 176 of 265 (66.4%) and 213 of 269 (79.2%) cases, respectively. Significant diagnostic information was obtained in 130 of 176 (74%) for 11b4, and 12 of 174 (7%) classifications were discordant with histopathology. Cases prospectively co-enrolled on MNP2.0 gave concordant classifications (99%) and score thresholds (93%), demonstrating excellent test reproducibility and sensitivity. Overall, DNA methylation profiling is a robust single workflow technique with an acceptable diagnostic yield that is considerably enhanced by the extensive subgroup and copy number profile information generated by the platform. The platform has excellent test reproducibility and sensitivity and contributes significantly to CNS tumor diagnosis.


Assuntos
Neoplasias do Sistema Nervoso Central , Metilação de DNA , Criança , Humanos , Austrália , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA/genética , Nova Zelândia , Estudos Prospectivos , Reprodutibilidade dos Testes
19.
Cancer ; 129(22): 3645-3655, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376781

RESUMO

BACKGROUND: Precision medicine is projected to become integral to childhood cancer care. As such, it is essential to support families to understand what precision medicine entails. METHODS: A total of 182 parents and 23 adolescent patients participating in Precision Medicine for Children with Cancer (PRISM), an Australian precision medicine clinical trial for high-risk childhood cancer, completed questionnaires after study enrollment (time 0 [T0]). Of the parents, 108 completed a questionnaire and 45 completed an interview following return of precision medicine results (time 1 [T1]). We analyzed the mixed-methods data comprising measures exploring families' perceptions and understanding of PRISM's participant information sheet and consent form (PISCF), and factors associated with understanding. RESULTS: Most parents were satisfied with the PISCF, rating it as at least "somewhat" clearly presented (n = 160/175; 91%) and informative (n = 158/175; 90%). Many suggested improvements including the use of clearer language and a more visually engaging format. Parents' actual understanding of precision medicine was low on average, but scores improved between T0 and T1 (55.8/100-60.0/100; p = .012). Parents from culturally and/or linguistically diverse backgrounds (n = 42/177; 25%) had lower actual understanding scores than those from a Western/European background whose first language was English (p = .010). There was little correlation between parents' perceived and actual understanding scores (p = .794; Pearson correlation -0.020; 95% CI, -0.169 to 0.116). Most adolescent patients read the PISCF either "briefly" or "not at all" (70%) and had a perceived understanding score of 63.6/100 on average. CONCLUSIONS: Our study revealed gaps in families' understanding of childhood cancer precision medicine. We highlighted areas for potential intervention such as through targeted information resources. PLAIN LANGUAGE SUMMARY: Precision medicine is projected to become part of the standard of care for children with cancer. Precision medicine aims to give the right treatment to the right patient and involves several complex techniques, many of which may be challenging to understand. Our study analyzed questionnaire and interview data from parents and adolescent patients enrolled in an Australian precision medicine trial. Findings revealed gaps in families' understanding of childhood cancer precision medicine. Drawing on parents' suggestions and the literature, we make brief recommendations about improving information provision to families, such as through targeted information resources.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Criança , Adolescente , Neoplasias/terapia , Austrália , Pais , Idioma
20.
Cancer ; 129(22): 3620-3632, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37382186

RESUMO

BACKGROUND: Germline genome sequencing in childhood cancer precision medicine trials may reveal pathogenic or likely pathogenic variants in cancer predisposition genes in more than 10% of children. These findings can have implications for diagnosis, treatment, and the child's and family's future cancer risk. Understanding parents' perspectives of germline genome sequencing is critical to successful clinical implementation. METHODS: A total of 182 parents of 144 children (<18 years of age) with poor-prognosis cancers enrolled in the Precision Medicine for Children with Cancer trial completed a questionnaire at enrollment and after the return of their child's results, including clinically relevant germline findings (received by 13% of parents). Parents' expectations of germline genome sequencing, return of results preferences, and recall of results received were assessed. Forty-five parents (of 43 children) were interviewed in depth. RESULTS: At trial enrollment, most parents (63%) believed it was at least "somewhat likely" that their child would receive a clinically relevant germline finding. Almost all expressed a preference to receive a broad range of germline genomic findings, including variants of uncertain significance (88%). Some (29%) inaccurately recalled receiving a clinically relevant germline finding. Qualitatively, parents expressed confusion and uncertainty after the return of their child's genome sequencing results by their child's clinician. CONCLUSIONS: Many parents of children with poor-prognosis childhood cancer enrolled in a precision medicine trial expect their child may have an underlying cancer predisposition syndrome. They wish to receive a wide scope of information from germline genome sequencing but may feel confused by the reporting of trial results.


Assuntos
Neoplasias , Humanos , Criança , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Motivação , Medicina de Precisão/métodos , Pais , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...